Estimates for Kloosterman sums for totally real number fields
نویسندگان
چکیده
منابع مشابه
Modular Invariants for Real Quadratic Fields and Kloosterman Sums
We investigate the asymptotic distribution of integrals of the j-function that are associated to ideal classes in a real quadratic field. To estimate the error term in our asymptotic formula, we prove a bound for sums of Kloosterman sums of half-integral weight which is uniform in every parameter. To establish this estimate we prove a variant of Kuznetsov’s formula where the spectral data is re...
متن کاملSum-product Estimates in Finite Fields via Kloosterman Sums
We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.
متن کاملPerfect Forms over Totally Real Number Fields
A rational positive-definite quadratic form is perfect if it can be reconstructed from the knowledge of its minimal nonzero value m and the finite set of integral vectors v such that f(v) = m. This concept was introduced by Voronöı and later generalized by Koecher to arbitrary number fields. One knows that up to a natural “change of variables” equivalence, there are only finitely many perfect f...
متن کاملOn Shintani’s ray class invariant for totally real number fields
We introduce a ray class invariant X(C) for a totally real field, following Shintani’s work in the real quadratic case. We prove a factorization formula X(C) = X1(C) · · ·Xn(C) where each Xi(C) corresponds to a real place (Theorem 3.5). Although this factorization depends a priori on some choices (especially on a cone decomposition), we can show that it is actually independent of these choices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)
سال: 2001
ISSN: 0075-4102,1435-5345
DOI: 10.1515/crll.2001.047